Asymptotic Expansion and Super Convergence of a Kind of Quasilinear Parabolic and Hyperbolic Equations Using Generalized Finite Element Method; An A.D.I FEM and Error Estimation for a Nonlinear Hyperbolic Equations 一类拟线性抛物与双曲方程广义有限元方法的渐近展式和超收敛1类非线性双曲型方程的交替方向有限元方法及误差估计
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived. 在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
Analysis of hyperbolic error in taper processing with circular turning tool 圆体车刀加工圆锥面时双曲线误差的分析
The high-accuracy upwind scheme is used to solve mixed boundary value problem for systems of the first order linear hyperbolic partial differential equations. The optimal order error estimations are given. 利用高精度迎风格式去解决一阶线性双曲偏微分方程组的混合边值问题,给出了误差估计。
In this paper, we consider mixed finit element methods for the initial-boundary value problems of two order hyperbolic equations and linear integro-differential equations of parabolic type, obtain the error estimates of the discrete schemes for this two kinds of problems. 本文讨论了二阶双曲方程和线性抛物型积分微分方程方程初边值问题的混合有限元方法,得到了这两类问题混合有限元离散格式的误差估计。
By using the Jacobi approximation for the hyperbolic conservative equation, a semi-discrete pseudospectral scheme and the error estimation are given. 本文利用Jacobi逼近方法,建立求解双曲型守恒方程的半离散拟谱格式,并给出误差估计式。
The Calculation of Hyperbolic Error in Cutting Cone 车削圆锥体时产生双曲线误差的计算
In this paper, some GE schemes for the first order hyperbolic equation with constant coefficients are given. Then we analysis the stability and the error. And the convergence and stability are proved. 本文给出一阶常系数双曲型方程初边值问题的几类GE算法,分析它们的稳定性与收敛性。证明了差分格式的收敛性与稳定性。
By using this method, automatic drawing is realized in designing different form turning tools which minimizes the hyperbolic error, increases the design speed and improves drawing quality. 此方法大大减小了工件加工时的双曲线误差,实现了各种成形车刀的自动绘图,提高了设计速度和绘图质量。
The simulation results show that the hyperbolic model to analyze the stress-strain relationship of the eco-material has a larger error, but the parabolic model to describe its stress-strain response is very reasonable. 模拟结果表明:根系的应力-应变关系用双曲线模型模拟误差较大,而用抛物线模型模拟则比较理想。
In this paper, Galerkin approximations of Second order hyperbolic equation is studied with the anisotropic modified rotated Q1-element. By means of integral identities and boundary estimates techniques, the optional error estimation is presented for hyperbolic equation. 运用具有各向异性特征的非协调元(修正的旋转Q1元)对二阶双曲方程进行了Galerkin逼近,通过采用积分恒等式和边界估计技巧,得到了相应的最优误差估计。
Improving the method of nodes coordinates computing, we will not adopt traditional triangulation algorithm but use 2-D hyperbolic location algorithm. Then, we will get the ultimate node coordinates which includes error correction. It is closer to the actual coordinates. 改进DV-Hop节点坐标计算方法,摒弃传统的三边定位算法而采用二维双曲线定位算法计算节点坐标。最后求得包含误差修正值的最终节点坐标,它更接近实际节点坐标。